

Lake 2016: Conference on Conservation and Sustainable Management of

Ecologically Sensitive Regions in Western Ghats

[THE 10TH BIENNIAL LAKE CONFERENCE]

Date: 28-30th December 2016, <http://ces.iisc.ernet.in/energy>

Venue: V.S. Acharya Auditorium, Alva's Education Foundation, Sundari Ananda Alva Campus, Vidyagiri, Moodbidri, D.K. Dist., Karnataka, India – 574227

WESTERN GHATS: A BIODIVERSITY HOTSPOT FOR CILIATED PROTISTS

Santosh Kumar^{1, 2,*}, Daizy Bharti¹, Harpreet Kaur¹, Khushboo Kashyap¹, Komal Kamra^{1,*}

¹ Ciliate Biology Laboratory, SGTB Khalsa College, University of Delhi, Delhi 110 007, India.

² Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, South Korea.

*Corresponding authors. Tel.: + 82 10 2895 6025; e-mail: santoshcbio@gmail.com(Kumar S.)
Tel.: + 91 98 717 71417; e-mail: komalkamra@gmail.com (Kamra K.)

EXTENDED ABSTRACT

The Western Ghats, World Heritage Site, Nilgiri Sub-Cluster (10°09'N 77°03'E), India, includes biosphere reserves, national parks, and several wildlife sanctuaries which conserve a plethora of species of animals, plants, and microbes (UNESCO 2007). Among these the Silent Valley National Park (Fig. 1), a part of the Western Ghats, is known for its high alpha biodiversity index of 4.8 (one of the highest in the world) as calculated by the Zoological Survey of India based on the diversity of flora. Climate of the region remains moderate with temperatures varying from 8°C to 27°C and precipitation between 3200mm to 7500mm. Vegetation of the Silent Valley includes tropical rain forests, montane sub-tropical forests, and montane temperate forests. Very low penetration of light through the tropical rain forest increases the humidity level, which supports a lot of climbers, ferns and fungi on the thick trunks of the trees. The park being a cliff plateau is naturally guarded on all sides by high mountains or faults of the Western Ghats and has remained inaccessible to all types of extraneous factors including human agencies.

Figure 1. Diagrammatic depiction of salient features of the Silent Valley National Park. The three largest peaks (arrowheads) are located on the north eastern boundary, the river Kunthipuzha originates from various peaks of the Nilgiri hills and traverses the entire length of the Valley. Sairandri is the entry point of the National Park.

Lake 2016: Conference on Conservation and Sustainable Management of Ecologically Sensitive Regions in Western Ghats

[THE 10TH BIENNIAL LAKE CONFERENCE]

Date: 28-30th December 2016, <http://ces.iisc.ernet.in/energy>

Venue: V.S. Acharya Auditorium, Alva's Education Foundation, Sundari Ananda Alva Campus, Vidyagiri, Moodbidri, D.K. Dist., Karnataka, India – 574227

The fauna of Silent Valley National Park is less documented as compared to flora; only some faunal groups including vertebrates and insects have been worked out by some groups (Mathew and Rahamathulla 1993; Mathew, Rugmini and Binoy 2003; Bird Life International 2005). Micro-organisms have been largely ignored but their importance in supporting biota cannot be over-estimated. One such understudied group is that of ciliated protists, despite the fact that they play an important role in the food web as a trophic link between bacteria and primary consumers. Thus far, only two reports exist reflecting the diversity of ciliates from the national park (Kumar et al. 2010, 2015); these studies described three new and four already known (though first records from India) of hypotrich ciliates. In the present study, we report the community structure of ciliates from four different ecozones of the Silent Valley National Park, i.e., tropical rain forest, grassland, reed swamp forest, and riverine forest. A total of 45 ciliate species (belonging to 6 class, 12 order, 16 families, and 31 genera: more than 50% of which are first reports from India, and their distribution from the ecozones were recorded (Tables 1, 2). Out of 45 ciliates identified, 34 were from the tropical rain forest tracts and eighteen were from the riverine forest soil giving them an aquatic connection (Table 2).

Table 1. List of 45 free living soil ciliate species from the Silent Valley National Park.

S. No.	CLASS	ORDER	FAMILY	GENUS/SPECIES
1, 2	Litostomatea	Haptorida	Spathidiidae	<i>Spathidium</i> sp. 1, 2
3-5	Colpodea	Colpodida	Colpodidae	<i>Colpodacucullus</i> , <i>C. inflata</i> , <i>C. steinii</i>
6	Oligohymenophorea	Tetrahymenida	Tetrahymenidae	<i>Tetrahymena</i> sp.
7	Colpodea	Bursarimorphida	Bursariidae	<i>Bursaria</i> sp.
8-9	Heterotrichea	Heterotrichida	Blepharismidae	<i>Blepharismahyalinum</i> , <i>Blepharisma</i> sp.
10	Oligohymenophorea	Peniculida	Frontoniidae	<i>Frontoniasp.</i>
11	Oligohymenophorea	Sessilida	Vorticellidae	<i>Vorticella</i> sp.
12	Litostomatea	Haptorida	Trachelidae	<i>Dileptussp.</i>
13	Armophorea	Armophorida	Metopidae	<i>Metopussp.</i>
14	Spirotrichea	Stichotrichida	Amphisiliidae	<i>Stichotrichine</i> sp.
15	Spirotrichea	Urostylida	Holostichidae	<i>Anteholostichaangida</i>
16	Spirotrichea	Urostylida	Holostichidae	<i>Caudiholostichasylvatica</i>
17	Spirotrichea	Urostylida	Bakuellidae	<i>Bakuellanilgiri</i>
18	Spirotrichea	Urostylida	Bakuellidae	<i>Holostichideschardezi</i>
19	Spirotrichea	Urostylida	Urostylidae	<i>Pseudourostylafranzi</i>
20	Spirotrichea	Urostylida	Urostylidae	<i>Pseudourostyla levis</i>
21-22	Spirotrichea	Uroleptida	Uroleptidae	<i>Uroleptuscaudatus</i> , <i>U. lepisma</i>
23, 24	Spirotrichea	Sporadotrichida	Oxytrichidae	<i>Cyrtohymenacitrina</i> , <i>C. primicirrata</i>
25	Spirotrichea	Sporadotrichida	Oxytrichidae	<i>Notohymenasp.</i>
26-27	Spirotrichea	Sporadotrichida	Trachelostylidae	<i>Gonostomum affine</i> , <i>G. singhii</i>
28-31	Spirotrichea	Sporadotrichida	Oxytrichidae	<i>Oxytrichasetigera</i> , <i>Oxytrichasp. 1,2,3</i>
32	Spirotrichea	Sporadotrichida	Oxytrichidae	<i>Urosomoidadorsiincisure</i>
33	Spirotrichea	Sporadotrichida	Oxytrichidae	<i>Rigidocortex octonucleatus</i>
34	Spirotrichea	Sporadotrichida	Oxytrichidae	<i>Apoamphisiliella</i> sp.

Lake 2016: Conference on Conservation and Sustainable Management of

Ecologically Sensitive Regions in Western Ghats

[THE 10TH BIENNIAL LAKE CONFERENCE]

Date: 28-30th December 2016, <http://ces.iisc.ernet.in/energy>

Venue: V.S. Acharya Auditorium, Alva's Education Foundation, Sundari Ananda Alva Campus, Vidyagiri, Moodbidri, D.K. Dist., Karnataka, India – 574227

S. No.	CLASS	ORDER	FAMILY	GENUS/SPECIES
35	Spirotrichea	Sporadotrichida	Oxytrichidae	<i>Australocirrus oscitans</i>
36	Spirotrichea	Sporadotrichida	Oxytrichidae	<i>Gastrostyla</i> sp.
37	Spirotrichea	Sporadotrichida	Oxytrichidae	<i>Hemigastrostylasp.</i>
38	Spirotrichea	Sporadotrichida	Oxytrichidae	<i>Steiniasphagnicola</i>
39-41	Spirotrichea	Sporadotrichida	Oxytrichidae	<i>Sterkiellahistriomuscorum</i> , <i>S. tricirrata</i> , <i>S. tetricirrata</i>
42	Spirotrichea	Sporadotrichida	Oxytrichidae	<i>Styloynchianotophora</i>
43-44	Spirotrichea	Sporadotrichida	Oxytrichidae	<i>Pleurotrichasp.</i> 1, 2
45	Spirotrichea	Euplotida	Euplotidae	<i>Euplotessp.</i>

The ciliated protists were collected, cultured and identified using standard internationally acceptable procedures which included live cell imaging and protargol staining to obtain biometry and morphogenetic data (Kumar et al. 2010, 2015). Classification and nomenclature used in the text and tables is according to Lynn (2008) and Berger (1999, 2006, 2008) while the terminology is as given by Wallengren (1900), Borror (1972, 1979), and Martin (1982).

Table 2. Distribution of species in different ecozones of Silent Valley National Park. TRF – Tropical Rain Forest, GL- Grassland, RSF- Reed Swamp Forest, RVF- Riverine Forest.

S. No.	Genus/species	TRF	GL	RSF	RVF
1	<i>Anteholostichaangida</i>	✓			
2	<i>Apoamphisiellasp.</i>	✓			
3	<i>Australocirrusoscitans</i>	✓			
4	<i>Bakuellanilgiri</i>		✓		
5	<i>Blepharismahyalinum</i>	✓			
6	<i>Blepharismasp.</i>	✓			✓
7	<i>Bursaria</i> sp.				✓
8	<i>Caudiholostichasylvatica</i>	✓			
9	<i>Colpodacucullus</i>	✓			
10	<i>Colpodainflata</i>	✓			
11	<i>Colpodasteinii</i>	✓	✓	✓	✓
12	<i>Cyrtohymenacitrina</i>	✓			
13	<i>Cyrtohymenaprimicirrata</i>				✓
14	<i>Dileptussp.</i>	✓			
15	<i>Euplotussp.</i>	✓			
16	<i>Frontoniasp.</i>	✓			✓
17	<i>Gastrostylasp.</i>	✓			
18	<i>Gonostomum affine</i>	✓			
19	<i>Gonostomumsinghii</i>	✓			
20	<i>Hemigastrostylasp.</i>	✓			
21	<i>Holostichideschardezi</i>	✓			

Lake 2016: Conference on Conservation and Sustainable Management of Ecologically Sensitive Regions in Western Ghats
[THE 10TH BIENNIAL LAKE CONFERENCE]
 Date: 28-30th December 2016, <http://ces.iisc.ernet.in/energy>

Venue: V.S. Acharya Auditorium, Alva's Education Foundation, Sundari Ananda Alva Campus, Vidyagiri, Moodbidri, D.K. Dist., Karnataka, India – 574227

S. No.	Genus/species	TRF	GL	RSF	RVF
22	<i>Metopusspp.</i>				✓
23	<i>Notohymenasp.</i>				✓
24	<i>Oxytrichasetigera</i>	✓	✓	✓	
25	<i>Oxytrichasp. 1</i>	✓		✓	
26	<i>Oxytrichasp. 2</i>			✓	
27	<i>Oxytrichasp. 3</i>				✓
28	<i>Uroleptuslepisma</i>	✓			
29	<i>Uroleptuscaudatus</i>				✓
30	<i>Pleurotrichasp. 1</i>	✓			
31	<i>Pleurotrichasp. 2</i>				✓
32	<i>Pseudourostylafranzi</i>				✓
33	<i>Pseudourostyla levis</i>	✓			
34	<i>Rigidocortexoctanucleatus</i>	✓			
35	<i>Spathidiumsp. 1</i>	✓			✓
36	<i>Spathidiumsp. 2</i>	✓	✓	✓	✓
37	<i>Steiniaphagnicola</i>	✓			✓
38	<i>Sterkiellahistriomuscorum</i>				✓
39	<i>Sterkiellatricirrata</i>	✓			
40	<i>Sterkiellatetraclirrata</i>	✓			✓
41	Stichotrichine (unidentified)	✓			
42	<i>Styloynchianotophora</i>	✓			✓
43	<i>Tetrahymenasp.</i>	✓			
44	<i>Urosomoidadorsiincisura</i>	✓			
45	<i>Vorticella</i> sp.	✓		✓	✓

The detailed morphology and morphogenesis of two *Uroleptus* species, viz., *Uroleptuslepisma* and *U. caudatus*, first recorded from India have been described in the present report; further a note on the distribution of the hypotrichs, especially, urostyloid ciliates have been presented.

Uroleptuslepisma has been previously reported from Portugal, while *Uroleptuscaudatus* has been found from Austria. *Uroleptuslepisma* from the Silent Valley inhabits the sandy soils of riverine forests. Earlier descriptions of its presence are from soils with high salinity (Berger and Foissner 1989). However, *Uroleptuscaudatus* was isolated from the soil of tropical rain forest and it shows many differences from the earlier described population from Austria (Eigner 2001). Of the six urostyloid species (for details refer Kumar et al. 2010), three species viz., *Anteholostichaangida*, *Caudiholostichasylvatica* and *Holostichideschardezi* were isolated from tropical rain forests. *Bakuelanilgiri* was found in a stretch of grasslands while *Pseudourostylafranzi* and *Pseudourostyla levis* were isolated from the sandy soils of riverine forests. All populations of *P. levis* thus far described have been isolated from fresh water bodies; *P. levis*, Silent Valley population, was found in a soil sample and is thus an exception. *Caudiholostichasylvatica*, *Holostichideschardezi*, *Pseudourostylafranzi*, and *Pseudourostyla levis* have also been reported to occur elsewhere and appear to be widely distributed. According to Foissner (1998) *Caudiholostichasylvatica* has been isolated from several sites in Austria, USA, Japan, S. Korea, China, and Australia. *Holostichideschardezi* is a soil ciliate and occurs in the Holarctis, the Palaeotropis, and Australis, having

Lake 2016: Conference on Conservation and Sustainable Management of Ecologically Sensitive Regions in Western Ghats

[THE 10TH BIENNIAL LAKE CONFERENCE]

Date: 28-30th December 2016, <http://ces.iisc.ernet.in/energy>

Venue: V.S. Acharya Auditorium, Alva's Education Foundation, Sundari Ananda Alva Campus, Vidyagiri, Moodbidri, D.K. Dist., Karnataka, India – 574227

been reported thus far from Senegal (type locality) and various sites in South Korea, Kenya, Germany, Italy, and Austria. *Pseudourostylafranzi* appears to be distributed worldwide; it has been reported from several sites in Europe, South America, Australia, Asia (China), and Africa. *Pseudourostyla levis* was found from various sites in Japan (Takahashi 1973, 1988, 1991); it has also been isolated from the river Yamuna near Delhi, India (Gupta 1990).

Sterkiellahistriomuscorum is the type species of the genus; it occurs in a wide variety of habitats worldwide having been reported from fresh water ponds, lakes, and soils (Berger 1999). *Sterkiellatetracirrata* showed unique combination of characters within the genus in having invariably four transverse cirri (Kumar et al. 2015). *Sterkiellatricirrata* has been previously reported from the soil of burnt savannah in the Ivory Coast; the Silent Valley population is rather similar in ciliature with the previous report except for some minor differences.

Overall, the ciliated protozoa of the Silent Valley National Park showed a mix of endemic (or erstwhile undescribed) and worldwide species. Some of these species are cosmopolitan, while others are endemic, showing that microevolution and dispersal of the group has occurred over a long period of time in this protected region. Furthermore, the high ciliate diversity from the Silent Valley National Park is primarily due to the fact that it is evolutionarily an archaic zone and secondarily the area is full of tropical rain forest tracts, an ideal environment for the growth of microorganisms.

ACKNOWLEDGEMENT

The financial support from Department of Science and Technology under - Research Projects- SR/SO/AS-04/2004 and EMR/2015/001505 are acknowledged. The guidance provided by. Prof.G.R. Sapra (Retd) and Prof.RupLal, University of Delhi, India, is greatly acknowledged. A special thanks is due to Mr. Ghanshyam Prasad Singh for his help in sample collection.

REFERENCES

- Berger H. (1999). Monograph of the Oxytrichidae (Ciliophora, Hypotrichia). Monogr. Biol., 78, 1-1080.
- Berger H. (2006). Monograph of the Urostyloidea (Ciliophora, Hypotricha). Monogr. Biol., 85, 1-1303.
- Berger H. (2008). Monograph of the Amphisiliellidae and Trachelostylidae (Ciliophora, Hypotricha). Monogr. Biol., 88, 1-737.
- Berger H. & Foissner W. (1989). Morphology and biometry of some soil hypotrichs (Protozoa, Ciliophora) from Europe and Japan. Bull. Br. Mus. nat. Hist. (Zool.), 55, 19-46.
- Borror A.C. (1972). Revision of the order Hypotrichida (Ciliophora, Protozoa). J. Protozool., 19, 1-23.
- Borror A.C. (1979). Redefinition of the Urostylidae (Ciliophora, Hypotrichida) on the basis of morphogenetic characters. J. Protozool., 26, 544-550.
- Bird Life International (2005). World Bird Database, Version 2.0. Cambridge, UK.
- Eigner P. (2001). Divisional morphogenesis in *Uroleptuscaudatus* (Stokes, 1886), and the relationship between the Urostylidae and the Parakahliellidae, Oxytrichidae, and Orthoamphisiliellidae on the basis of morphogenetic processes (Ciliophora, Hypotrichida). J. Euk. Microbiol., 48, 70-79.
- Foissner W. (1998). An updated compilation of world soil ciliates (Protozoa, Ciliophora), with ecological notes, new records, and descriptions of new species. Eur. J. Protistol., 34, 195-235.
- Gupta S. (1990). Studies on the regulation of macronuclear DNA content, corticomorphogenesis and the pseudoencystment process in the ciliate *Pseudourostyla levis* (Takahashi). Thesis submitted to the University of Delhi for the degree of Doctor of Philosophy.

Lake 2016: Conference on Conservation and Sustainable Management of Ecologically Sensitive Regions in Western Ghats
[THE 10TH BIENNIAL LAKE CONFERENCE]
Date: 28-30th December 2016, <http://ces.iisc.ernet.in/energy>

Venue: V.S. Acharya Auditorium, Alva's Education Foundation, Sundari Ananda Alva Campus, Vidyagiri, Moodbidri, D.K. Dist., Karnataka, India – 574227

- Lynn D.H. (2008). The ciliated protozoa: characterization, classification, and guide to the literature.
- Martin, J. (1982). Evolution des patrons morphogenétiques et phylogénétiques dans le sous-ordre des Sporadotrichina (Ciliophora, Hypotrichida). *Protistologica*. 18, 431-447.
- Mathew G. & Rahamathulla V.K. (1993). Studies on the butterflies of Silent Valley National Park. *Entomon* (Division of Entomology, Kerala Forest Research Institute, Kerala, India). 18, 185-192.
- Mathew G., Rugmini P. & Binoy C.F. (2003). Impact of forest fire on insect species diversity - a study in the Silent Valley National Park, Kerala, India. *Entomon* (Division of Entomology, Kerala Forest Research Institute, Kerala, India), 28, 105-114.
- Kumar S., Kamra K. & Sapra G.R. (2010). Ciliates of the Silent Valley National Park, India: Urostylid Hypotrichs of the Region with a note on the Habitat. *Actaprotzool*. 49. 339-364.
- Kumar S., Kamra K., Bharti D., La Terza A., Sehgal N., Warren A. & Sapra G.R. (2015). Morphology, morphogenesis, and molecular phylogeny of *Sterkiellatetracirrata* n. sp. (Ciliophora, Oxytrichidae), from the Silent Valley National Park, India. *Eur. J. Protistol.*. 51 86-97.
- Takahashi T. (1973). Mating types and two conjugation types of *Pseudourostyla levis* sp. n. (Ciliata) *J. Sci. Hiroshima Univ., Series B, Division 1. Zoology*. 24, 145-163.
- Takahashi T. (1988). Reorganization in amicronucleates with defective mouth of the ciliate *Pseudourostyla levis*. *J. Protozool.*, 35, 142-150.
- Takahashi T. & Suhama M. (1991). Regeneration of amicronucleate fragments in the hypotrichous ciliate *Pseudourostyla levis*. *Eur. J. Protistol.*, 26, 308-318.
- UNESCO (2007). World Heritage sites (tentative list), The Western Ghats, Nilgiris sub cluster.
- Wallengren H. (1900). Zur Kenntnis der vergleichendenmorphologie der hypotrichieinfusorien. *Bih. K. svenska Vetensk. Akad. Handl.*, 26, 1-31.